Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.00 vteřin. 
Interakce konstrukce ocelové nádrže a kapaliny při seizmické události
Plášil, Pavel ; Hradil, Petr (oponent) ; Salajka, Vlastislav (vedoucí práce)
Sestavení metodou konečných prvků prostorového výpočtového modelu konstrukce nádrže s kapalinou s využitím programového systému ANSYS. Řešení vlastního kmitání nádrže s i bez účinků kapaliny. Aplikace Eulerova a Lagrangeova postupu při modelování kapaliny. Provedení srovnání. Řešení seizmické odezvy s využitím spekter odezvy. Posouzení nádrže v souladu s EC3 a EC8.
Stanovení metodiky analýzy seismické odezvy potrubních soustav s viskózními tlumiči
Chlud, Michal ; Salajka, Vlastislav (oponent) ; Kanický, Viktor (oponent) ; Malenovský, Eduard (vedoucí práce)
Viskózní tlumiče jsou široce používány k zajištění seizmické odolnosti potrubí a zařízení v jaderných elektrárnách. Tlumící vlastnosti těchto tlumičů jsou nelineárně frekvenčně závislé, což způsobuje komplikace při jejich výpočtovém modelování. Inženýrská praxe se s frekvenční závislostí tlumičů vyrovnává nejčastěji dvěma způsoby: První možností je zjednodušeně popsat nelineární chování tlumiče pomocí lineární pružiny (někdy nazývanou pseudotuhostí) a následně pomocí metod spekter odezvy zjistit seizmickou odezvu řešeného systému. Zejména u komplikovaných konstrukcí, jakými jsou např. hlavní cirkulační potrubí, je korektní linearizace charakteristik tlumiče velice obtížná a často se spíše jedná o inženýrský odhad. Do výpočtu se tak mohou vnést nepřesnosti, které mohou vést k chybnému výpočtu odezvy na seizmické buzení. Výhodou tohoto přístupu je zejména relativně snadné a dostatečně rychlé stanovení seizmické odezvy. Druhá možnost spočívá v popisu nelineárních vlastností tlumiče jeho rheologickým modelem a ve stanovení seizmické odezvy metodou přímé integrace pohybových rovnic v čase. Metoda přímé integrace pohybových rovnic vyžaduje vstupní buzení ve formě závislosti kinematické veličiny na čase (nejčastěji zrychlení). Samotný výpočet přímou integrací pohybových rovnic je ve srovnání s metodou spekter odezvy značně náročnější. Obtížné je i zpracování odezvy ve formě časové závislosti. Na druhou stranu je chování tlumičů popsáno výrazně přesněji. Cílem práce je vytvořit takový postup, který by vhodně zkombinoval v současnosti používaná řešení a umožnil tak stanovit seizmickou odezvu komplikovaných potrubních soustav s viskózními tlumiči s přijatelnou přesností a přitom v efektivním časovém rámci. Vytvořený postup je následující: Nejprve se vypracuje matematický model potrubní soustavy ve specializovaném programu pro výpočet potrubí (AutoPIPE), který se pomocí připraveného rozhraní převede do obecného konečnoprvkového programu (ANSYS). Viskózní tlumiče se zde popíší rheologickým modelem a pomocí přímé integrace pohybových rovnic se vyřeší odezva na seizmické buzení zadané akcelerogramy (nezbytné pro řešení jsou pouze reakce a posuvy v uzlech představující tlumiče). Z vypočtených výsledků reakcí a posuvů se pomocí statistického rozboru určí tuhosti pružinových náhrad tlumičů a tím se úloha linearizuje. Následuje řešení metodou spekter odezvy ve specializovaném programu pro výpočty potrubí (AutoPIPE), ve kterém se provede i kombinace výsledků statické a dynamické odezvy. K vyhodnocení výsledků a posouzení podle pevnostních norem se využije předzpracovaných knihoven, které jsou obsaženy ve specializovaném potrubním softwaru. Vytvořený postup je aplikován na komplikovaných potrubních soustavách jaderných elektráren typu VVER 440 MW a VVER 1000 MW, konkrétně na bezpečnostně významných potrubních trasách jako jsou hlavní cirkulační potrubí a potrubí kompenzace objemu.
Vliv technické a přírodní seizmicity na stavební konstrukce se zaměřením na konstrukce ze zdicích materiálů
Čada, Zdeněk ; Králik,, Juraj (oponent) ; prof. Ing. Alois Materna, CSc., MBA (oponent) ; Krejsa,, Martin (oponent) ; Salajka, Vlastislav (vedoucí práce)
Disertační práce pojednává o vybraných problémech v oblasti řešení dynamické odezvy stavebních konstrukcí na nestacionární zatížení nuceným pohybem v místě uložení. Jedná se o seizmické zatížení. Jsou doporučeny postupy, jak využít seizmické záznamy buzení s ohledem na přesnost dynamických výpočtů. Elastická spektra odezvy je nutno upravit tak, aby byla zajištěna požadovaná spolehlivosti návrhu. Je ukázáno, jak generovat vhodné syntetické akcelerogramy pro řešení požadované odezvy. Podle vytvořené vlastní metodiky byl generován syntetický akcelerogram pro užití při experimentální seizmické zkoušce zděného objektu z autoklávovaného betonu v modelovém měřítku. Odezvové veličiny pohybu získané v měřených místech při experimentu byly porovnány s lineárními a nelineárními dynamickými výpočty na modelech sestavenými metodou konečných prvků. Byly použity numerické modely s různými úrovněmi detailnosti. Smykové chování stěn bylo modelováno s užitím konstitutivních vztahů zahrnující možnost křehkého porušení a dále s užitím nelineárního interakčního rozhraní zahrnující delaminaci mezi zdicími prvky. Chování matematického modelu stěnových systémů bylo kalibrováno s ohledem na měřená data při smykových zkouškách stěn ve skutečném a modelovém měřítku.
Stanovení metodiky analýzy seismické odezvy potrubních soustav s viskózními tlumiči
Chlud, Michal ; Salajka, Vlastislav (oponent) ; Kanický, Viktor (oponent) ; Malenovský, Eduard (vedoucí práce)
Viskózní tlumiče jsou široce používány k zajištění seizmické odolnosti potrubí a zařízení v jaderných elektrárnách. Tlumící vlastnosti těchto tlumičů jsou nelineárně frekvenčně závislé, což způsobuje komplikace při jejich výpočtovém modelování. Inženýrská praxe se s frekvenční závislostí tlumičů vyrovnává nejčastěji dvěma způsoby: První možností je zjednodušeně popsat nelineární chování tlumiče pomocí lineární pružiny (někdy nazývanou pseudotuhostí) a následně pomocí metod spekter odezvy zjistit seizmickou odezvu řešeného systému. Zejména u komplikovaných konstrukcí, jakými jsou např. hlavní cirkulační potrubí, je korektní linearizace charakteristik tlumiče velice obtížná a často se spíše jedná o inženýrský odhad. Do výpočtu se tak mohou vnést nepřesnosti, které mohou vést k chybnému výpočtu odezvy na seizmické buzení. Výhodou tohoto přístupu je zejména relativně snadné a dostatečně rychlé stanovení seizmické odezvy. Druhá možnost spočívá v popisu nelineárních vlastností tlumiče jeho rheologickým modelem a ve stanovení seizmické odezvy metodou přímé integrace pohybových rovnic v čase. Metoda přímé integrace pohybových rovnic vyžaduje vstupní buzení ve formě závislosti kinematické veličiny na čase (nejčastěji zrychlení). Samotný výpočet přímou integrací pohybových rovnic je ve srovnání s metodou spekter odezvy značně náročnější. Obtížné je i zpracování odezvy ve formě časové závislosti. Na druhou stranu je chování tlumičů popsáno výrazně přesněji. Cílem práce je vytvořit takový postup, který by vhodně zkombinoval v současnosti používaná řešení a umožnil tak stanovit seizmickou odezvu komplikovaných potrubních soustav s viskózními tlumiči s přijatelnou přesností a přitom v efektivním časovém rámci. Vytvořený postup je následující: Nejprve se vypracuje matematický model potrubní soustavy ve specializovaném programu pro výpočet potrubí (AutoPIPE), který se pomocí připraveného rozhraní převede do obecného konečnoprvkového programu (ANSYS). Viskózní tlumiče se zde popíší rheologickým modelem a pomocí přímé integrace pohybových rovnic se vyřeší odezva na seizmické buzení zadané akcelerogramy (nezbytné pro řešení jsou pouze reakce a posuvy v uzlech představující tlumiče). Z vypočtených výsledků reakcí a posuvů se pomocí statistického rozboru určí tuhosti pružinových náhrad tlumičů a tím se úloha linearizuje. Následuje řešení metodou spekter odezvy ve specializovaném programu pro výpočty potrubí (AutoPIPE), ve kterém se provede i kombinace výsledků statické a dynamické odezvy. K vyhodnocení výsledků a posouzení podle pevnostních norem se využije předzpracovaných knihoven, které jsou obsaženy ve specializovaném potrubním softwaru. Vytvořený postup je aplikován na komplikovaných potrubních soustavách jaderných elektráren typu VVER 440 MW a VVER 1000 MW, konkrétně na bezpečnostně významných potrubních trasách jako jsou hlavní cirkulační potrubí a potrubí kompenzace objemu.
Vliv technické a přírodní seizmicity na stavební konstrukce se zaměřením na konstrukce ze zdicích materiálů
Čada, Zdeněk ; Králik,, Juraj (oponent) ; prof. Ing. Alois Materna, CSc., MBA (oponent) ; Krejsa,, Martin (oponent) ; Salajka, Vlastislav (vedoucí práce)
Disertační práce pojednává o vybraných problémech v oblasti řešení dynamické odezvy stavebních konstrukcí na nestacionární zatížení nuceným pohybem v místě uložení. Jedná se o seizmické zatížení. Jsou doporučeny postupy, jak využít seizmické záznamy buzení s ohledem na přesnost dynamických výpočtů. Elastická spektra odezvy je nutno upravit tak, aby byla zajištěna požadovaná spolehlivosti návrhu. Je ukázáno, jak generovat vhodné syntetické akcelerogramy pro řešení požadované odezvy. Podle vytvořené vlastní metodiky byl generován syntetický akcelerogram pro užití při experimentální seizmické zkoušce zděného objektu z autoklávovaného betonu v modelovém měřítku. Odezvové veličiny pohybu získané v měřených místech při experimentu byly porovnány s lineárními a nelineárními dynamickými výpočty na modelech sestavenými metodou konečných prvků. Byly použity numerické modely s různými úrovněmi detailnosti. Smykové chování stěn bylo modelováno s užitím konstitutivních vztahů zahrnující možnost křehkého porušení a dále s užitím nelineárního interakčního rozhraní zahrnující delaminaci mezi zdicími prvky. Chování matematického modelu stěnových systémů bylo kalibrováno s ohledem na měřená data při smykových zkouškách stěn ve skutečném a modelovém měřítku.
Interakce konstrukce ocelové nádrže a kapaliny při seizmické události
Plášil, Pavel ; Hradil, Petr (oponent) ; Salajka, Vlastislav (vedoucí práce)
Sestavení metodou konečných prvků prostorového výpočtového modelu konstrukce nádrže s kapalinou s využitím programového systému ANSYS. Řešení vlastního kmitání nádrže s i bez účinků kapaliny. Aplikace Eulerova a Lagrangeova postupu při modelování kapaliny. Provedení srovnání. Řešení seizmické odezvy s využitím spekter odezvy. Posouzení nádrže v souladu s EC3 a EC8.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.